不同强度分布激光水平传输稳态热晕效应的数值模拟

吴书云, 李新阳, 罗曦. 不同强度分布激光水平传输稳态热晕效应的数值模拟[J]. 光电工程, 2018, 45(2): 170620. doi: 10.12086/oee.2018.170620
引用本文: 吴书云, 李新阳, 罗曦. 不同强度分布激光水平传输稳态热晕效应的数值模拟[J]. 光电工程, 2018, 45(2): 170620. doi: 10.12086/oee.2018.170620
Wu Shuyun, Li Xinyang, Luo Xi. Numerical simulation of horizontal propagation steady-state thermal blooming effect on laser beam with different intensity distribution[J]. Opto-Electronic Engineering, 2018, 45(2): 170620. doi: 10.12086/oee.2018.170620
Citation: Wu Shuyun, Li Xinyang, Luo Xi. Numerical simulation of horizontal propagation steady-state thermal blooming effect on laser beam with different intensity distribution[J]. Opto-Electronic Engineering, 2018, 45(2): 170620. doi: 10.12086/oee.2018.170620

不同强度分布激光水平传输稳态热晕效应的数值模拟

  • 基金项目:
    中国科学院创新基金项目(CXJJ-16S022)
详细信息
    作者简介:
    通讯作者: 李新阳(1971-),男,博士,研究员,主要从事自适应光学相关技术方面的研究。E-mail:xyli@ioe.ac.cn
  • 中图分类号: TN249

Numerical simulation of horizontal propagation steady-state thermal blooming effect on laser beam with different intensity distribution

  • Fund Project: Supported by Chinese Academy of Sciences Innovation Fund(CXJJ-16S022)
More Information
  • 采用数值模拟的方法,以高斯光束、平顶光束、有中心遮拦的平顶光束为例,研究了激光在均匀大气传输过程中产生的稳态热晕效应。详细分析了发射功率、传输距离、光束直径、横向风速四种参数对热晕效应的影响,得到了以上三种光束的斯特列尔比和峰值偏移量随广义热畸变参数N的变化关系。数值仿真结果表明,在其他参数一致的情况下,发射功率越大、传输距离越长,热晕效应越强;而光束直径和横向风速的增加会减小热晕效应;不同激光强度分布对热晕效应的影响不同。在同样广义热畸变参数N的条件下,高斯光束的热晕效应最严重,平顶光束次之,空心光束的热晕效应最小。

  • Overview: With the development of laser technology, the laser plays an increasingly important role in military and civilian fields. A series of linear and nonlinear effects can be produced when laser propagated in the atmosphere. Among them, the thermal blooming is one of the important nonlinear effects. It also limits the power and brings adverse effects to many engineering applications of laser. Thermal blooming effect is a phenomenon that the atmospheric molecular and aerosol particles of atmosphere will absorb laser energy which accordingly causes heating expansion and the decrease of the local refractive index when laser propagates in atmosphere. Eventually, the energy of this laser beam will be reduced, the spot of this laser beam will be larger and the wave-front of this laser beam will be distorted. Thus, the study of propagation rules for laser beams through the atmosphere is of great significance for the effective application of the laser. In this paper equation for paraxial beams was deduced, which is foundation of numerical algorithms to solve thermal blooming problems. Bradley-Hermann thermal distortion parameter which is important to thermal blooming was given subsequently. The horizontal propagation steady-state thermal blooming effects of laser beams with different intensity distributions, such as Gaussian beam, flat-top beam, and flat-top beam with center obscuration, have been investigated by numerical simulation. The impacts of the output power, the propagation distance, the beam diameter, and the wind velocity vertical to the propagation direction on the steady-state thermal blooming have been discussed for the above mentioned three kinds of beams. Furthermore, the steady-state thermal blooming induced Strehl ratio degradation and peak intensity offset versus the generalized thermal distortion parameter N after long-path horizontal propagation of laser beams with above mentioned three types of intensity distributions have been derived. The simulation results show that, for certain other parameters, the greater output power or longer propagation distance will induce the stronger thermal blooming, and the increment of the launch diameter or the convection wind velocity vertical to the propagation direction will weaken the thermal blooming oppositely. Furthermore, for laser beams with different intensity distributions, the impacts of the thermal blooming on the propagation are so different. Under the same generalized thermal distortion parameter N, the thermal blooming effect on the Gaussian beam is the most serious, followed by the flat-top beam, and flat-top beam with center obscuration is the smallest. This research work can provide somewhat guidance for the engineering application of lasers.

  • 加载中
  • 图 1  初始光束的强度立体分布((a1), (b1), (c1))和等强度分布((a2), (b2), (c2))。(a1),(a2)高斯光束;(b1),(b2)平顶光束;(c1),(c2)平顶光束遮拦比40%

    Figure 1.  Three-dimensional plots of intensity ((a1), (b1), (c1)) and isointensity contours ((a2), (b2), (c2)) for different beam. (a1), (a2) Gaussian beam; (b1), (b2) Flat-top beam; (c1), (c2) Flat beam obscuration ratio is 40%

    图 2  不同初始功率情况下激光到达靶面的强度立体分布((a1),(b1),(c1))和等强分布((a2),(b2),(c2)) (高斯光束)。(a1),(a2)发射功率为1000 W;(b1),(b2)发射功率为2000 W;(c1),(c2)发射功率为3000 W

    Figure 2.  Three-dimensonal plots of intensity ((a1), (b1), (c1)) and isointensity contours ((a2), (b2), (c2)) for different laser power (Gaussian beam). (a1), (a2) Power is 1000 W; (b1), (b2) Power is 2000 W; (c1), (c2) Power is 3000 W

    图 3  不同初始功率情况下激光到达靶面的强度立体分布((a1),(b1),(c1))和等强分布((a2),(b2),(c2)) (平顶光束)。(a1),(a2)发射功率为1000 W;(b1),(b2)发射功率为2000 W;(c1),(c2)发射功率为3000 W

    Figure 3.  Three-dimensional plots of intensity ((a1), (b1), (c1)) and isointensity contours ((a2), (b2), (c2)) for different laser power. (flat-top beam). (a1), (a2) Power is 1000 W; (b1), (b2) Power is 2000 W; (c1), (c2) Power is 3000 W

    图 4  不同初始功率情况下激光到达靶面的强度立体分布((a1),(b1),(c1))和等强分布((a2),(b2),(c2))(平顶光束遮拦比40%)。(a1),(a2)发射功率为1000 W;(b1),(b2)发射功率为2000 W;(c1),(c2)发射功率为3000 W

    Figure 4.  Three-dimensional plots of intensity ((a1), (b1), (c1)) and isointensity contours ((a2), (b2), (c2)) for different laser power (flat-top beam obscuration ratio is 40%). (a1), (a2) Power is 1000 W; (b1), (b2) Power is 2000 W; (c1), (c2) Power is 3000 W

    图 5  传输距离不同时激光达到靶面的强度立体分布((a1),(b1),(c1))和等强分布((a2),(b2),(c2))(高斯光束)。(a1),(a2)传输距离为2000 m;(b1),(b2)传输距离为3000 m;(c1),(c2)传输距离为4000 m

    Figure 5.  Three-dimensional plots of intensity ((a1), (b1), (c1)) and isointensity contours ((a2), (b2), (c2)) for different distance (Gaussian beam). (a1), (a2) 2000 m; (b1), (b2) 3000 m; (c1), (c2) 4000 m

    图 6  传输距离不同时激光达到靶面的强度立体分布((a1),(b1),(c1))和等强分布((a2),(b2),(c2))(平顶光束)。(a1),(a2)传输距离为2000 m;(b1),(b2)传输距离为3000 m;(c1),(c2)传输距离为4000 m

    Figure 6.  Three-dimensional plots of intensity ((a1), (b1), (c1)) and isointensity contours ((a2), (b2), (c2)) for different distance (flat-top beam). (a1), (a2) 2000 m; (b1), (b2) 3000 m; (c1), (c2) 4000 m

    图 7  传输距离不同时激光达到靶面的强度立体分布((a1),(b1),(c1))和等强分布((a2),(b2),(c2))(平顶光束遮拦比40%)。(a1),(a2)传输距离为2000 m;(b1),(b2)传输距离为3000 m;(c1),(c2)传输距离为4000 m

    Figure 7.  Three-dimensional plots of intensity ((a1), (b1), (c1)) and isointensity contours ((a2), (b2), (c2)) for different distance (flat-top beam obscuration ratio is 40%). (a1), (a2) 2000 m; (b1), (b2) 3000 m; (c1), (c2) 4000 m

    图 8  光束直径不同时激光达到靶面的强度立体分布((a1),(b1),(c1))和等强分布((a2),(b2),(c2))(高斯光束)。(a1),(a2)光束直径为0.1 m;(b1),(b2)光束直径为0.2 m;(c1),(c2)光束直径为0.6 m

    Figure 8.  Three-dimensional plots of intensity ((a1), (b1), (c1)) and isointensity contours ((a2), (b2), (c2)) for different beam diameter (Gaussian beam). (a1), (a2) Beam diameter is 0.1 m; (b1), (b2) Beam diameter is 0.2 m; (c1), (c2) Beam diameter is 0.6 m

    图 9  光束直径不同时激光达到靶面的强度立体分布((a1),(b1),(c1))和等强分布((a2),(b2),(c2))(平顶光束)。(a1),(a2)光束直径为0.1 m;(b1),(b2)光束直径为0.2 m;(c1),(c2)光束直径为0.6 m

    Figure 9.  Three-dimensional plots of intensity ((a1), (b1), (c1)) and isointensity contours ((a2), (b2), (c2)) for different beam diameter (flat-top beam). (a1), (a2) Beam diameter is 0.1 m; (b1), (b2) Beam diameter is 0.2 m; (c1), (c2) Beam diameter is 0.6 m

    图 10  光束直径不同时激光达到靶面的强度立体分布((a1),(b1),(c1))和等强分布((a2),(b2),(c2)) (平顶光束遮拦比40%)。(a1),(a2)光束直径为0.1 m;(b1),(b2)光束直径为0.2 m;(c1),(c2)光束直径为0.6 m

    Figure 10.  Three-dimensional plots of intensity ((a1), (b1), (c1)) and isointensity contours((a2), (b2), (c2)) for different beam diameter (flat-top beam obscuration ratio is 40%). (a1), (a2) Beam diameter is 0.1 m; (b1), (b2) Beam diameter is 0.2 m; (c1), (c2) Beam diameter is 0.6 m

    图 11  横向风风速不同时激光到达靶面时的强度立体分布((a1),(b1),(c1))和等强分布((a2),(b2),(c2))(高斯光束)。(a1),(a2)风速为2 m/s;(b1),(b2)风速为4 m/s;(c1),(c2)风速为6 m/s

    Figure 11.  Three-dimensional plots of intensity ((a1), (b1), (c1)) and isointensity contours((a2), (b2), (c2)) for different wind velocity (Gaussian beam). (a1), (a2) Wind velocity is 2 m/s; (b1), (b2) Wind velocity is 4 m/s; (c1), (c2) Wind velocity is 6 m/s

    图 12  横向风风速不同时激光到达靶面时的强度立体分布((a1),(b1),(c1))和等强度分布((a2),(b2),(c2)) (平顶光束)。(a1),(a2)风速为2 m/s;(b1),(b2)风速为4 m/s;(c1),(c2)风速为6 m/s

    Figure 12.  Three-dimensional plots of intensity ((a1), (b1), (c1)) and isointensity contours ((a2), (b2), (c2)) for different wind velocity (flat-top beam). (a1), (a2) Wind velocity is 2 m/s; (b1), (b2) Wind velocity is 4 m/s; (c1), (c2) Wind velocity is 6 m/s

    图 13  横向风风速不同时激光到达靶面时的强度立体分布((a1),(b1),(c1))和等强分布((a2),(b2),(c2)) (平顶光束遮拦比40%)。(a1),(a2)风速为2 m/s;(b1),(b2)风速为4 m/s;(c1),(c2)风速为6 m/s

    Figure 13.  Three-dimensional plots of intensity ((a1), (b1), (c1)) and isointensity contours((a2), (b2), (c2)) for different wind velocity (flat-top beam obscuration ratio is 40%). (a1), (a2) Wind velocity is 2 m/s; (b1), (b2) Wind velocity is 4 m/s; (c1), (c2) Wind velocity is 6 m/s

    图 14  不同光束形状下,(a)斯特列尔比随广义热畸变参数的变化,(b)峰值偏移量随广义热畸变参数的变化

    Figure 14.  Different beam shape (a) Strehl ratio versus thermal distortion parameter and (b) peak deflection versus thermal distortion parameter

  • [1]

    税奇军. 气溶胶所致热晕的数值研究[D]. 成都: 电子科技大学, 2007: 28-35.

    Shui Q. Thermal blooming due to aerosol particles[D]. Chengdu: University of Electronic Science and Technology of China, 2007: 28-35.

    [2]

    陈栋泉, 李有宽, 徐锡申, 等.激光大气传输中热晕的数值模拟[J].强激光与粒子束, 1993, 5(2): 243-252. http://d.wanfangdata.com.cn/Thesis/Y1556780

    Chen D Q, Li Y K, Xu X S, et al. Numerical Simulation of thermal blooming in atmospheric laser propagation[J]. High Power Laser & Particle Beams, 1993, 5(2): 243-252. http://d.wanfangdata.com.cn/Thesis/Y1556780

    [3]

    禹烨, 牛燕雄, 王秀生, 等.强激光稳态热晕效应的数值模拟研究[J].激光技术, 2007, 31(2): 182-184.

    Yu Y, Niu Y X, Wang X S, et al. Numerical simulation of steady-state thermal blooming about high power laser[J]. Laser Technology, 2007, 31(2): 182-184.

    [4]

    冯绚, 黄印博, 范承玉, 等.高能激光室内传输热晕效应的数值分析[J].强激光与粒子束, 2004, 16(9): 1123-1126. http://d.wanfangdata.com.cn/Thesis/Y1713744

    Feng X, Huang Y B, Fan C Y, et al. Numerical model for high energy laser indoor transmission[J]. High Power Laser and Particle Beams, 2004, 16(9): 1123-1126. http://d.wanfangdata.com.cn/Thesis/Y1713744

    [5]

    Gebhardt F G. Twenty-five years of thermal blooming: an overview[J]. Proceedings of SPIE, 1990, 1221: 2-25. doi: 10.1117/12.18326

    [6]

    谢晓钢, 张建柱, 岳玉芳, 等.激光系统组件化仿真软件EasyLaser[J].强激光与粒子束, 2013, 25(10): 2536-2540. http://mall.cnki.net/magazine/Article/QJGY201310013.htm

    Xie X G, Zhang J Z, Yue Y F, et al. EasyLaser: component-based laser system simulation software[J]. High Power Laser and Particle Beams, 2013, 25(10): 2536-2540. http://mall.cnki.net/magazine/Article/QJGY201310013.htm

    [7]

    杜祥琬.实际强激光远场靶面上光束质量的评价因素[J].中国激光, 1997, 24(4): 327-332. http://www.cqvip.com/QK/95389X/1997004/2451762.html

    Du X W. Factors for evaluating beam guality of a real high power laser on the target surface in far field[J]. Chinese Journal of Lasers, 1997, 24(4): 327-332. http://www.cqvip.com/QK/95389X/1997004/2451762.html

    [8]

    乔春红. 高能激光大气传输及其相位补偿的仿真研究[D]. 合肥: 中国科学院合肥物质科学研究院, 2009: 17.

    Qiao C H. Simulation research of high energy laser propagation in the atmosphere and its phase compensation[D]. Hefei: Hefei Institute of Material Science, Chinese Academy of Sciences, 2009: 17.http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y1617348

  • 加载中

(14)

计量
  • 文章访问数:  7309
  • PDF下载数:  3549
  • 施引文献:  0
出版历程
收稿日期:  2017-11-12
修回日期:  2018-01-16
刊出日期:  2018-02-22

目录

/

返回文章
返回