大口径光学元件瞬态波前检测

孟诗, 陈磊, 朱文华, 等. 大口径光学元件瞬态波前检测[J]. 光电工程, 2018, 45(1): 170536. doi: 10.12086/oee.2018.170536
引用本文: 孟诗, 陈磊, 朱文华, 等. 大口径光学元件瞬态波前检测[J]. 光电工程, 2018, 45(1): 170536. doi: 10.12086/oee.2018.170536
Meng Shi, Chen Lei, Zhu Wenhua, et al. Instantaneous wavefront measurement of large aperture optical elements[J]. Opto-Electronic Engineering, 2018, 45(1): 170536. doi: 10.12086/oee.2018.170536
Citation: Meng Shi, Chen Lei, Zhu Wenhua, et al. Instantaneous wavefront measurement of large aperture optical elements[J]. Opto-Electronic Engineering, 2018, 45(1): 170536. doi: 10.12086/oee.2018.170536

大口径光学元件瞬态波前检测

  • 基金项目:
    国家自然科学基金(U1231111);江苏省自然科学基金(BK2012802)资助项目
详细信息
    作者简介:
    通讯作者: 陈磊(1964-),男,博士,研究员,博士生导师,主要从事光学动态干涉测试及光学测试仪器的研究。E-mail: chenlei@mail.njust.edu.cn
  • 中图分类号: TH74;O436.1

Instantaneous wavefront measurement of large aperture optical elements

  • Fund Project: Supproted by National Natural Science Foundation of China (U1231111) and National Natural Science Foundation of Jiangsu (BK2012802)
More Information
  • 为瞬态测量大口径光学元件波前,提出一种基于斜入射结构的近红外反射式错位点衍射干涉原理的Φ400 mm瞬态波前检测方法。该方案将待测光分成两束互相错位的参考光与测试光,从而在干涉图中引入高线性载频,采集到对比度良好的干涉图后,利用傅里叶变换相位解调法从单幅干涉图中提取待测波前相位,实现瞬态波前动态测量。实验光路总长近20 m,极易受气流的影响,且由于气流干扰随时间变化,该系统本身可以看作是大口径光学元件瞬态波前发生与检测装置。测试结果与SID4波前传感器比较,波前均方根(RMS)小于1/50 λ,可知所提方法可以实现大口径瞬态波前的高分辨率与高精度检测。

  • Overview: In order to measure the instantaneous wavefront of large aperture optical elements, a method based on the structure of oblique incidence of reflective shearing point diffraction interferometer is proposed. In the measurement, the near infrared fiber laser, which operates at 1313 nm wavelength, works as a light source. The light beam transmits through the spatial filter to generate a standard spherical wavefront. The standard spherical wavefront passes through the beam splitter and then it reaches the off-axis parabolic mirror whose diameter is 400 mm and F number is 10. The off-axis parabolic mirror realizes the transformation between the convergent wavefront and the collimation wavefront. The collimated wavefront reaches back to the off-axis mirror after being reflected by the mirror under test. The wavefront to be measured is splitted into two parts. One part is reflected directly from the slit and form the wavefront to be measured, the other part transmits through the slit and is diffracted by the pinhole to get a standard spherical wavefront works as the reference wavefront.These two kinds of wavefront form interference fringe at the target surface of the CCD and the imaging lens images the location of the exit pupil. Because of the transverse dislocation of the two beams of light, high linear carrier frequency of the interferogram is introduced.The frequency of the linear carrier is set, by adjusting the incidence angle θ, near the Nyquist frequency as close as possible. After receiving a good contrast interferogram, wavefront phase is retrieved by Fourier transform (FT) automatically to realize the dynamic measurement of instantaneous wavefront. On the basis of scalar diffraction theory and Fourier optics theory, a theoretical model of instantaneous wavefront was established and formula of linear carrier was derived.Furthermore, to study the effect which the lateral and axial defocus of pinhole have on diffraction intensity and reference wavefront quality, a mathematical model of convergent beam diffraction by a pinhole is established based on Fresnel diffraction theory. F number of the converging beam, diameter of the pinhole and so on are also taken into account. The optical path is up to 20 m, due to the long cavity of the optical path, the air current is a significance factor to the result. Besides, because of the air current, the system itself can be seen as a instantaneous wavefront happening and measurement of large aperture optical elements. The results indicate that the root mean square value is in accord with that acquired by SID4 wavefront sensor (less than 1/50λ), so about the repeated accuracy. The testing method proposed can be applied in high resolution and accuracy measurement of instantaneous wavefront

  • 加载中
  • 图 1  反射式错位点衍射干涉仪原理图

    Figure 1.  Principle of the near infrared reflective shearing point diffraction interferometery

    图 2  光路示意图。(a)测试光路图;(b)实际搭建光路图

    Figure 2.  Optical path diagram. (a) The testing optical path; (b) The optical path in reality

    图 3  (a) CCD采集到的干涉图;(b) CCD采集到的干涉图区域放大;(c)恢复得到的面型

    Figure 3.  (a) Interferogram collected by CCD; (b) A small piece of area after being amplified; (c) Wavefront recovered

    图 4  (a) 恢复面形峰谷值(PV)分布;(b)恢复面形均方根值(RMS)分布

    Figure 4.  Distributions of PV (a) and RMS (b)

    图 5  (a) SID-4恢复得到的面形;(b)SID-4测量面形与图 3(c)面形差值

    Figure 5.  (a) Wavefront recovered by SID-4; (b) D-value of SID-4 wavefront and Fig. 3(c)

    表 1  室温15℃、湿度50%情况下某次恢复的30组波面数据

    序号 PV/λ RMS/λ
    1 0.616 0.079
    2 0.689 0.079
    3 0.641 0.080
    4 0.609 0.079
    5 0.631 0.079
    6 0.642 0.078
    7 0.607 0.079
    8 0.599 0.078
    9 0.644 0.079
    10 0.573 0.080
    11 0.654 0.079
    12 0.596 0.080
    13 0.581 0.081
    14 0.594 0.081
    15 0.608 0.081
    16 0.615 0.081
    17 0.573 0.084
    18 0.630 0.084
    19 0.606 0.085
    20 0.594 0.086
    21 0.577 0.087
    22 0.654 0.079
    23 0.662 0.078
    24 0.673 0.079
    25 0.676 0.078
    26 0.660 0.077
    27 0.661 0.077
    28 0.624 0.074
    29 0.559 0.083
    30 0.567 0.082
    下载: 导出CSV
  • [1]

    Malacara D. Optical Shop Testing[M]. Hoboken, N. J: Willy, 2007.

    [2]

    Hernandez-Gomez C, Collier J L, Hawkes S J, et al. Wave-front control of a large-aperture laser system by use of a static phase corrector[J]. Applied Optics, 2000, 39(12): 1954-1961. doi: 10.1364/AO.39.001954

    [3]

    张金平, 张学军, 张忠玉, 等. Shack-Hartmann波前传感器检测大口径圆对称非球面反射镜[J].光学 精密工程, 2012, 20(3): 492-498. http://www.opticsjournal.net/abstract.htm?id=OJ120416000303WsZv3y

    Zhang J P, Zhang X J, Zhang Z Y, et al. Test of rotationally symmetric aspheric surface using Shack-Hartmann wavefront sensor[J]. Optics and Precision Engineering, 2012, 20(3): 492-498. http://www.opticsjournal.net/abstract.htm?id=OJ120416000303WsZv3y

    [4]

    何煦, 马军.共光路径向剪切干涉仪的设计[J].光学 精密工程, 2011, 19(9): 2029-2035. http://www.eope.net/EN/article/downloadArticleFile.do?attachType=PDF&id=10967

    He X, Ma J. Design of common path radial shearing interferometer[J]. Optics and Precision Engineering, 2011, 19(9): 2029-2035. http://www.eope.net/EN/article/downloadArticleFile.do?attachType=PDF&id=10967

    [5]

    Ling T, Liu D, Yang Y Y, et al. Off-axis cyclic radial shearing interferometer for measurement of centrally blocked transient wavefront[J]. Optics Letters, 2013, 38(14): 2493-2495. doi: 10.1364/OL.38.002493

    [6]

    Millerd J E, Martnek S J, Brock J N, et al. Instantaneous phase-shift point-diffraction interferometer[J]. Proceedings of SPIE, 2004, 5380: 422-429. doi: 10.1117/12.557126

    [7]

    Neal M R, Wyant C J. Polarization phase-shifting point-diffraction interferometer[J]. Applied Optics, 2006, 45(15): 3463-3476. doi: 10.1364/AO.45.003463

    [8]

    刘景峰, 李艳秋, 刘克.移相式点衍射干涉仪的几个关键技术[J].仪器仪表学报, 2007, 28(4): 179-182. http://www.cqvip.com/Main/Detail.aspx?id=1000087267

    Liu J F, Li Y Q, Liu K. Technical problems in phase-shifting point diffraction interferometer[J]. Chinese Journal of Scientific Instrument, 2007, 28(4): 179-182. http://www.cqvip.com/Main/Detail.aspx?id=1000087267

    [9]

    Du Y Z, Feng G Y, Li H R, et al. Circular common-path point diffraction interferometer[J]. Optics Letters, 2012, 37(19): 3927-3929. doi: 10.1364/OL.37.003927

    [10]

    吴亚琴. 基于傅里叶变换法的环形共光路点衍射干涉仪[D]. 呼和浩特: 内蒙古工业大学, 2014.

    Wu Y Q. Cyclic common-path point-diffraction interferometer based on Fourier-transiorm method[D]. Hohhot: Inner Mongolia University of Technology, 2014.http://cdmd.cnki.com.cn/article/cdmd-10128-1015532104.htm

    [11]

    吴亚琴, 白福忠, 刘珍, 等.环形共光路点衍射干涉仪[J].光学技术, 2014, 40(5): 421-424. http://www.cqvip.com/QK/91230X/201405/662702670.html

    Wu Y Q, Bai F Z, Liu Z, et al. Circular common-path point-diffraction interferometer[J]. Optical Technique, 2014, 40(5): 421-424. http://www.cqvip.com/QK/91230X/201405/662702670.html

    [12]

    李金鹏, 陈磊, 万骏, 等.光栅点衍射干涉法检测Φ400mm瞬态波前[J].光学 精密工程, 2015, 23(6): 1538-1546. http://www.eope.net/gxjmgc/CN/abstract/abstract15831.shtml

    Li J P, Chen L, Wan J, et al. Evaluation of Φ400 mm instantaneous wavefront using grating point diffraction interferometry[J]. Optics and Precision Engineering, 2015, 23(6): 1538-1546. http://www.eope.net/gxjmgc/CN/abstract/abstract15831.shtml

    [13]

    卢增雄, 金春水, 马冬梅, 等.微小孔偏差对远场波前质量影响分析[J].光学学报, 2011, 31(8): 0812002. http://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201108022.htm

    Lu Z X, Jin C S, Ma D M, et al. Analysis of effect of tiny pinhole deviation on far-field wave-front quality[J]. Acta Optica Sinica, 2011, 31(8): 0812002. http://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201108022.htm

    [14]

    Takeda M, Ina H, Kobayashi S. Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry[J]. Journal of the Optical Society of America, 1982, 72(1): 156-160. doi: 10.1364/JOSA.72.000156

    [15]

    Roddier C, Roddier F. Interferogram analysis using Fourier transform techniques[J]. Applied Optics, 1987, 26(9): 1668-1673. doi: 10.1364/AO.26.001668

  • 加载中

(5)

(1)

计量
  • 文章访问数:  7680
  • PDF下载数:  4168
  • 施引文献:  0
出版历程
收稿日期:  2017-10-10
修回日期:  2017-12-16
刊出日期:  2018-01-15

目录

/

返回文章
返回