小型机载偏振成像系统研制及应用研究

王海峰, 胡奇琪, 段佳著, 等. 小型机载偏振成像系统研制及应用研究[J]. 光电工程, 2017, 44(11): 1075-1082. doi: 10.3969/j.issn.1003-501X.2017.11.006
引用本文: 王海峰, 胡奇琪, 段佳著, 等. 小型机载偏振成像系统研制及应用研究[J]. 光电工程, 2017, 44(11): 1075-1082. doi: 10.3969/j.issn.1003-501X.2017.11.006
Haifeng Wang, Qiqi Hu, Jiazhu Duan, et al. Development and applications of small airborne polarization imaging system[J]. Opto-Electronic Engineering, 2017, 44(11): 1075-1082. doi: 10.3969/j.issn.1003-501X.2017.11.006
Citation: Haifeng Wang, Qiqi Hu, Jiazhu Duan, et al. Development and applications of small airborne polarization imaging system[J]. Opto-Electronic Engineering, 2017, 44(11): 1075-1082. doi: 10.3969/j.issn.1003-501X.2017.11.006

小型机载偏振成像系统研制及应用研究

详细信息

Development and applications of small airborne polarization imaging system

More Information
  • 机载偏振成像是未来遥感探测领域的重要研究方向之一。首先基于液晶双折射率效应完成了高精度液晶偏振控制器研制,并对其偏振调制精度进行标定;然后利用液晶偏振控制器搭建了高精度小型机载偏振成像系统,并基于小型固定翼无人机完成了系统的搭载飞行测试和目标识别探测试验。试验结果表明,液晶偏振控制器的Stokes偏振参数调制精度优于98%,利用液晶偏振控制器搭建的小型机载偏振成像系统可有效抑制背景干扰,提高低对比度目标的轮廓提取能力和目标识别能力。研究成果为偏振成像技术在目标侦察、环境监测、农作物普查等方面的应用提供了一种有效的技术途径。

  • Abstract: Polarization is the important feature of reflected light from object (including wavelength, amplitude, phase, and polarization). According to the Fresnel reflection law, polarized characteristic will occur within the reflecting effect or radiating effect, which is the foundation for polarization remote sensing. Especially, man-made objects typically produce relatively strong polarization reflection signatures compared to natural materials. Theses signatures can be exploited for target or image contrast enhancement. Airborne imaging polarimeter is one of the important research techniques in the remote sensing fields which could be used to further describe the surface roughness, texture direction and surface orientation of the interesting object, especially for the recognition of object contour and surface roughness.

    The high-precision polarization controller based on the birefringence effect of liquid crystal with the customizable working band between 420 nm~1000 nm and the measuring error less than 2% was developed and calibrated. Then a miniaturized airborne polarization imaging system (integrating liquid crystal polarization controller, optical detector, imaging memorizer, and electrical system) has been built and calibrated. Finally, the polarization imaging system was fixed on small unmanned aerial vehicles to check out its technical index and enhanced detectivity of low contrast target, man-made target and so on.

    Three results could be found from our experiment. 1) The polarized modulator based on liquid crystal variable retarder could be used to control polarized status and realize the full Stokes parameters inversion calculation of reflected light, which has many technical features such as small size, light weight, big transmission aperture and high detection accuracy. 2) The airborne polarization imaging system based on the liquid-crystal polarized modulator has been achieved with the boundary size less than 150 mm×100 mm×100 mm (not including the imaging lens) and the weight as 2.5 kg. The airborne polarization imaging system was proved to be suitable to environmental requirements of most small unmanned aerial vehicle, and could be used to obtain the polarized information with the two working methods such as storing online and real-time processing. 3) The small airborne polarization imaging system could be used to effectively suppress the background interference and improve the contour extraction ability and target recognition ability of the low contrast targets. Our finding provides an effective technical approach for expanding the polarized imaging applications in target surveillance, environmental monitoring and crop investigating.

  • 加载中
  • 图 1  液晶偏振调制器工作示意图.

    Figure 1.  The working scheme of liquid crystal polarized modulator.

    图 2  液晶偏振调制器实物图.

    Figure 2.  The practicality structure of liquid crystal polarized modulator.

    图 3  液晶相位调制器偏振参数调制精度检测光路图.

    Figure 3.  The optical path of modulated precision measurement of liquid crystal polarized modulator.

    图 4  小型机载偏振成像系统结构框图.

    Figure 4.  The physical design of small airborne imaging polarimeter.

    图 5  小型机载偏振成像系统实物图及技术指标.

    Figure 5.  The practicality structure and technical index of small airborne imaging polarimeter.

    图 6  532 nm机载偏振成像实验(300 m航高). (a) I(0, 0). (b) I(0, 90). (c) I(90, 90). (d) I(0, 180). (e) S0图像. (f) S1图像. (g) S2图像. (h) S3图像. (i) P图像. (j) C图像. (k) P+S0图像.

    Figure 6.  The airborne polarized imaging at 532 nm (300 m altitude). (a) I(0, 0). (b) I(0, 90). (c) I(90, 90). (d) I(0, 180). (e) S0. (f) S1. (g) S2. (h) S3. (i) P. (j) C. (k) P+S0.

    图 7  人造目标偏振遥感成像实验(300 m航高). (a) S0图像. (b) P图像.

    Figure 7.  The polarized detection of man-made objects (300 m altitude). (a) S0. (b) P.

    图 8  低对比度目标偏振遥感成像实验(2000 m航高). (a) S0图像. (b) P图像.

    Figure 8.  The polarized detection of low-contrast objects (2000 m altitude). (a) S0. (b) P.

    表 1  液晶偏振控制器偏振参数调制精度实测结果.

    Table 1.  The measurement results of modulated precision of liquid crystal polarized modulator.

    波长/nm驱动电压组序理论值实测值(6次测量平均值)调制误差/%
    4801(-1,0,0)(-0.9994,0.0034,0.0030)<1
    2(0,0,1)(0.0098,0.0029,0.9987)<1
    3(0,1,0)(0.0054,0.9999,0.0034)<1
    4(1,0,0)0.9954,0.0037,0.0009)<1
    5321(-1,0,0)(-0.9982,0.0028,0.0034)<1
    2(0,0,1)(0.0038,0.0026,0.9994)<1
    3(0,1,0)(0.0014,0.9999,0.0074)<1
    4(1,0,0)(0.9982,0.0042,0.0021)<1
    6321(-1,0,0)(-0.9986,0.0014,-0.0032)<1
    2(0,0,1)(0.0078,0.0087,0.9996)<1
    3(0,1,0)(0.0014,0.9949,0.0034)<1
    4(1,0,0)(0.9985,0.0048,0.0086)<1
    7801(-1,0,0)(-0.9992,-0.0021,0.0030)<1
    2(0,0,1)(0.0038,0.0029,0.9987)<1
    3(0,1,0)(0.0054,0.9999,0.0034)<1
    4(1,0,0)(0.9954,0.0022,0.0012)<1
    8501(-1,0,0)(-0.9999,0.0015,-0.0032)<1
    2(0,0,1)(0.0052,0.0019,0.9997)<1
    3(0,1,0)(0.0024,0.9999,0.0014)<1
    4(1,0,0)(0.9989,0.0077,-0.0019)<1
    9801(-1,0,0)(-0.9974,0.0031,0.0031)<1
    2(0,0,1)(0.0088,0.0009,0.9989)<1
    3(0,1,0)(-0.0023,0.9999,0.0012)<1
    4(1,0,0)(0.9979,0.0072,0.0019)<1
    下载: 导出CSV
  • [1]

    Wolff L B. Polarization-based material classification from specular reflection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12(11): 1059–1071. doi: 10.1109/34.61705

    [2]

    莫春和, 段锦, 付强, 等.国外偏振成像军事应用的研究进展(下)[J].红外技术, 2014, 36(4): 265–270. doi: 10.11846/j.issn.1001_8891.201404002

    Mo Chunhe, Duan Jin, Fu Qiang, et al. Review of polarization imaging technology for international military application (Ⅱ)[J]. Infrared Technology, 2014, 36(4): 265–270. doi: 10.11846/j.issn.1001_8891.201404002

    [3]

    王启超, 时家明, 赵大鹏, 等.基于AOTF的高光谱偏振成像系统设计[J].光电工程, 2013, 40(1): 66–71. http://d.wanfangdata.com.cn/Periodical_gdgc201301012.aspx

    Wang Qichao, Shi Jiaming, Zhao Dapeng, et al. Design of hyperspectral polarization image system based on acousto-optic tunable filter[J]. Opto-Electronic Engineering, 2013, 40(1): 66‒71. http://d.wanfangdata.com.cn/Periodical_gdgc201301012.aspx

    [4]

    孙洁, 高隽, 怀宇, 等.全天域大气偏振模式的实时测量系统[J].光电工程, 2016, 43(9): 45–50. http://www.cqvip.com/QK/90982A/201609/670108815.html

    Sun Jie, Gao Jun, Huai Yu, et al. Real-time measurement system for the pattern of all skylight polarization[J]. Opto-Electronic Engineering, 2016, 43(9): 45‒50, 55. http://www.cqvip.com/QK/90982A/201609/670108815.html

    [5]

    Egan W G, Duggin M J. Optical enhancement of aircraft detection using polarization[J]. Proceedings of SPIE, 2000, 4133: 172–178. doi: 10.1117/12.406624

    [6]

    Ben-Dor B, Oppenheim U P, Balfour L S. Polarization properties of targets and backgrounds in the infrared[J]. Proceedings of SPIE, 1993, 1971: 68–77. doi: 10.1117/12.151029

    [7]

    Schmugge T J. Remote sensing of surface soil moisture[J]. Journal of Applied Metheorology, 1978, 17(10): 1549–1557. doi: 10.1175/1520-0450(1978)017<1549:RSOSSM>2.0.CO;2

    [8]

    邵卫东, 王培刚, 王桂平, 等.分光偏振计技术研究[J].中国激光, 2003, 30(1): 60–64. http://www.wenkuxiazai.com/doc/315174224b73f242336c5f33.html

    Shao Weidong, Wang Peigang, Wang guiping, et al. Study on spectropolarimeter[J]. Chinese Journal of Lasers, 2003, 30(1): 60–64. http://www.wenkuxiazai.com/doc/315174224b73f242336c5f33.html

    [9]

    Forssell G, Karlsson E. Measurements of polarization properties of camouflaged objects and of the denial of surfaces covered with cenospheres[J]. Proceedings of SPIE, 2003, 5075: 246–258. doi: 10.1117/12.487312

    [10]

    De Jong W, Cremer F, Schutte K, et al. Usage of polarization features of landmines for improved automatic detection[J]. Proceedings of SPIE, 2000, 4038: 241–252. doi: 10.1117/12.396250

    [11]

    Zhang Z X, Wang P G. Polarimetry for four stockes parameters in space[J]. Science in China Series E: Technological Sciences 2002, 45(3): 300–305. doi: 10.1360/02ye9035

    [12]

    Sun X B, Hong J, Qiao Y L, et al. Analysis of characteristic of multiband aerial polarization image[J]. Proceedings of SPIE, 2005, 5832: 219–227. https://www.researchgate.net/publication/238534998_Analysis_of_characteristic_of_multiband_aerial_polarization_image

    [13]

    陈述彭, 童庆禧, 郭华东.遥感信息机理研究[M].北京:科学出版社, 1998: 278–355.

    Chen Shupeng, Tong Qingxi, Guo Huadong. Mechanism of remote sensing information[M]. Beijing: Science Press, 1998: 278–355.

    [14]

    江继军, 张大勇, 李剑峰, 等.基于液晶可变相位延迟器的两片式线偏振态转换器研究[J].应用光学, 2011, 32(1): 13–17. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yygx201101004

    Jiang Jijun, Zhang Dayong, Li Jianfeng, et al. Research of polarization converter based on two liquid-crystal variable retarders[J]. Journal of Applied Optics, 2011, 32(1): 13–17. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yygx201101004

    [15]

    Gu Dongfeng, Winker B, Wen Bing, et al. Liquid crystal tunable polarization filters for polarization imaging[J]. Proceedings of SPIE, 2008, 7050: 705001. doi: 10.1117/12.814817

    [16]

    De Martino A, Kim Y K, Garcia-Caurel E, et al. Optimized Mueller polarimeter with liquid crystals[J]. Optics Letters, 2003, 28(8): 616–618. doi: 10.1364/OL.28.000616

    [17]

    Laude-Boulesteix B, De Martino A, Drévillon B, et al. Muller polarimetric imaging system with liquid crystals[J]. Applied Op-tics, 2004, 43(14): 2824–2832. doi: 10.1364/AO.43.002824

    [18]

    Li J, Wu S T. Extended Cauchy equations for the refractive indices of liquid crystals[J]. Journal of Applied Physics, 2004, 95(3): 896–901. doi: 10.1063/1.1635971

    [19]

    裘桢炜, 洪津.偏振遥感器镜头相位延迟特性分析[J].红外与激光工程, 2014, 43(3): 806–811. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=hwyj201403025&dbname=CJFD&dbcode=CJFQ

    Qiu Zhenwei, Hong Jin. Retardane characteristics analysis of lens in polarization remote sensors[J]. Infrared and Laser Engineering, 2014, 43(3): 806–811. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=hwyj201403025&dbname=CJFD&dbcode=CJFQ

    [20]

    阿查姆R M A, 巴夏拉N M. 椭圆偏振测量术和偏振光[M]. 梁民基, 译. 北京: 科学出版社, 1986: 37–38.

    Azzam R M A, Bashara N M. Ellipsometry and polarized light[M]. Liang Minji, trans. Beijing: Science Press, 1986: 37–38.

    [21]

    Wolff L B, Mancini T A, Pouliquen P, et al. Liquid crystal polarization camera[J]. IEEE Transactions on Robotics and Automation, 1997, 13(2): 195–203. doi: 10.1109/70.563642

  • 加载中

(8)

(1)

计量
  • 文章访问数:  8326
  • PDF下载数:  3614
  • 施引文献:  0
出版历程
收稿日期:  2017-08-18
修回日期:  2017-10-17
刊出日期:  2017-11-15

目录

/

返回文章
返回