Zhang FL, Su ZC, Li Z, Zhu Y, Gagrani N et al. High-speed multiwavelength InGaAs/InP quantum well nanowire array micro-LEDs for next generation optical communications. Opto-Electron Sci 2, 230003 (2023). doi: 10.29026/oes.2023.230003
Citation: Zhang FL, Su ZC, Li Z, Zhu Y, Gagrani N et al. High-speed multiwavelength InGaAs/InP quantum well nanowire array micro-LEDs for next generation optical communications. Opto-Electron Sci 2, 230003 (2023). doi: 10.29026/oes.2023.230003

Article Open Access

High-speed multiwavelength InGaAs/InP quantum well nanowire array micro-LEDs for next generation optical communications

More Information
  • Miniaturized light sources at telecommunication wavelengths are essential components for on-chip optical communication systems. Here, we report the growth and fabrication of highly uniform p-i-n core-shell InGaAs/InP single quantum well (QW) nanowire array light emitting diodes (LEDs) with multi-wavelength and high-speed operations. Two-dimensional cathodoluminescence mapping reveals that axial and radial QWs in the nanowire structure contribute to strong emission at the wavelength of ~1.35 and ~1.55 μm, respectively, ideal for low-loss optical communications. As a result of simultaneous contributions from both axial and radial QWs, broadband electroluminescence emission with a linewidth of 286 nm is achieved with a peak power of ~17 μW. A large spectral blueshift is observed with the increase of applied bias, which is ascribed to the band-filling effect based on device simulation, and enables voltage tunable multi-wavelength operation at the telecommunication wavelength range. Multi-wavelength operation is also achieved by fabricating nanowire array LEDs with different pitch sizes on the same substrate, leading to QW formation with different emission wavelengths. Furthermore, high-speed GHz-level modulation and small pixel size LED are demonstrated, showing the promise for ultrafast operation and ultracompact integration. The voltage and pitch size controlled multi-wavelength high-speed nanowire array LED presents a compact and efficient scheme for developing high-performance nanoscale light sources for future optical communication applications.
  • 加载中
  • [1] Schubert EF. Light-Emitting Diodes 2nd ed (Cambridge University Press, Cambridge, 2006);http://doi.org/10.1017/CBO9780511790546.

    Google Scholar

    [2] Floyd R, Gaevski M, Hussain K, Mamun A, Chandrashekhar MVS et al. Enhanced light extraction efficiency of micropixel geometry AlGaN DUV light-emitting diodes. Appl Phys Express 14, 084002 (2021). doi: 10.35848/1882-0786/ac0fb8

    CrossRef Google Scholar

    [3] Huang YG, Hsiang EL, Deng MY, Wu ST. Mini-LED, Micro-LED and OLED displays: present status and future perspectives. Light Sci Appl 9, 105 (2020). doi: 10.1038/s41377-020-0341-9

    CrossRef Google Scholar

    [4] Ra YH, Rashid RT, Liu XH, Sadaf SM, Mashooq K et al. An electrically pumped surface-emitting semiconductor green laser. Sci Adv 6, eaav7523 (2020). doi: 10.1126/sciadv.aav7523

    CrossRef Google Scholar

    [5] Nami M, Rashidi A, Monavarian M, Mishkat-Ul-Masabih S, Rishinaramangalam AK et al. Electrically injected GHz-class GaN/InGaN core–shell nanowire-based μLEDs: carrier dynamics and nanoscale homogeneity. ACS Photonics 6, 1618–1625 (2019). doi: 10.1021/acsphotonics.9b00639

    CrossRef Google Scholar

    [6] Koester R, Sager D, Quitsch WA, Pfingsten O, Poloczek A et al. High-speed GaN/GaInN nanowire array light-emitting diode on silicon(111). Nano Lett 15, 2318–2323 (2015). doi: 10.1021/nl504447j

    CrossRef Google Scholar

    [7] Rajbhandari S, McKendry JJD, Herrnsdorf J, Chun H, Faulkner G et al. A review of gallium nitride LEDs for multi-gigabit-per-second visible light data communications. Semicond Sci Technol 32, 023001 (2017). doi: 10.1088/1361-6641/32/2/023001

    CrossRef Google Scholar

    [8] Wen PY, Tiwari P, Mauthe S, Schmid H, Sousa M et al. Waveguide coupled III-V photodiodes monolithically integrated on Si. Nat Commun 13, 909 (2022). doi: 10.1038/s41467-022-28502-6

    CrossRef Google Scholar

    [9] Mauthe S, Baumgartner Y, Sousa M, Ding Q, Rossell MD et al. High-speed III-V nanowire photodetector monolithically integrated on Si. Nat Commun 11, 4565 (2020). doi: 10.1038/s41467-020-18374-z

    CrossRef Google Scholar

    [10] Matsuda Y, Funato S, Funato M, Kawakami Y. Multiwavelength-emitting InGaN quantum wells on convex-lens-shaped GaN microstructures. Appl Phys Express 15, 105503 (2022). doi: 10.35848/1882-0786/ac934e

    CrossRef Google Scholar

    [11] Murillo-Borjas BL, Li X, Gu Q. High-speed nanoLEDs for chip-scale communication. Nano Commun Netw 30, 100376 (2021). doi: 10.1016/j.nancom.2021.100376

    CrossRef Google Scholar

    [12] Takiguchi M, Zhang GQ, Sasaki S, Nozaki K, Chen E et al. Direct modulation of a single InP/InAs nanowire light-emitting diode. Appl Phys Lett 112, 251106 (2018). doi: 10.1063/1.5037011

    CrossRef Google Scholar

    [13] Chen R, Ng KW, Ko WS, Parekh D, Lu FL et al. Nanophotonic integrated circuits from nanoresonators grown on silicon. Nat Commun 5, 4325 (2014). doi: 10.1038/ncomms5325

    CrossRef Google Scholar

    [14] Zhang GQ, Takiguchi M, Tateno K, Tawara T, Notomi M et al. Telecom-band lasing in single InP/InAs heterostructure nanowires at room temperature. Sci Adv 5, eaat8896 (2019). doi: 10.1126/sciadv.aat8896

    CrossRef Google Scholar

    [15] Lauhon LJ, Gudiksen MS, Wang DL, Lieber CM. Epitaxial core–shell and core–multishell nanowire heterostructures. Nature 420, 57–61 (2002). doi: 10.1038/nature01141

    CrossRef Google Scholar

    [16] Herranz J, Corfdir P, Luna E, Jahn U, Lewis RB et al. Coaxial GaAs/(In, Ga)As dot-in-a-well nanowire heterostructures for electrically driven infrared light generation on si in the telecommunication O band. ACS Appl Nano Mater 3, 165–174 (2020). doi: 10.1021/acsanm.9b01866

    CrossRef Google Scholar

    [17] Akamatsu T, Tomioka K, Motohisa J. Demonstration of InP/InAsP/InP axial heterostructure nanowire array vertical LEDs. Nanotechnology 31, 394003 (2020). doi: 10.1088/1361-6528/ab9bd2

    CrossRef Google Scholar

    [18] Yang I, Zhang X, Zheng CL, Gao Q, Li ZY et al. Radial growth evolution of InGaAs/InP multi-quantum-well nanowires grown by selective-area metal organic vapor-phase epitaxy. ACS Nano 12, 10374–10382 (2018). doi: 10.1021/acsnano.8b05771

    CrossRef Google Scholar

    [19] Zhang FL, Zhang XT, Li ZY, Yi RX, Li Z et al. A new strategy for selective area growth of highly uniform InGaAs/InP multiple quantum well nanowire arrays for optoelectronic device applications. Adv Funct Mater 32, 2103057 (2022). doi: 10.1002/adfm.202103057

    CrossRef Google Scholar

    [20] Yi RX, Zhang XT, Zhang FL, Gu LP, Zhang Q et al. Integrating a nanowire laser in an on-chip photonic waveguide. Nano Lett 22, 9920–9927 (2022). doi: 10.1021/acs.nanolett.2c03364

    CrossRef Google Scholar

    [21] Yang I, Li ZY, Wong-Leung J, Zhu Y, Li Z et al. Multiwavelength single nanowire InGaAs/InP quantum well light-emitting diodes. Nano Lett 19, 3821–3829 (2019). doi: 10.1021/acs.nanolett.9b00959

    CrossRef Google Scholar

    [22] Fickenscher M, Shi T, Jackson HE, Smith LM, Yarrison-Rice JM et al. Optical, structural, and numerical investigations of GaAs/AlGaAs core–multishell nanowire quantum well tubes. Nano Lett 13, 1016–1022 (2013). doi: 10.1021/nl304182j

    CrossRef Google Scholar

    [23] Sköld N, Wagner JB, Karlsson G, Hernán T, Seifert W et al. Phase segregation in AlInP shells on GaAs nanowires. Nano Lett 6, 2743–2747 (2006). doi: 10.1021/nl061692d

    CrossRef Google Scholar

    [24] Tomioka K, Motohisa J, Hara S, Hiruma K, Fukui T. GaAs/AlGaAs core multishell nanowire-based light-emitting diodes on Si. Nano Lett 10, 1639–1644 (2010). doi: 10.1021/nl9041774

    CrossRef Google Scholar

    [25] Li N, Han K, Spratt W, Bedell S, Ott J et al. Ultra-low-power sub-photon-voltage high-efficiency light-emitting diodes. Nat Photonics 13, 588–592 (2019). doi: 10.1038/s41566-019-0463-x

    CrossRef Google Scholar

    [26] Yang I, Kim S, Niihori M, Alabadla A, Li ZY et al. Highly uniform InGaAs/InP quantum well nanowire array-based light emitting diodes. Nano Energy 71, 104576 (2020). doi: 10.1016/j.nanoen.2020.104576

    CrossRef Google Scholar

    [27] Khan MZM, Alhashim HH, Ng TK, Ooi BS. High-power and high-efficiency 1.3-μm superluminescent diode with flat-top and ultrawide emission bandwidth. IEEE Photonics J 7, 1600308 (2015). doi: 10.1109/JPHOT.2015.2399442

    CrossRef Google Scholar

    [28] Rajendran V, Fang MH, Guzman GND, Lesniewski T, Mahlik S et al. Super broadband near-infrared phosphors with high radiant flux as future light sources for spectroscopy applications. ACS Energy Lett 3, 2679–2684 (2018). doi: 10.1021/acsenergylett.8b01643

    CrossRef Google Scholar

    [29] Chang JR, Chang SP, Li YJ, Cheng YJ, Sou KP et al. Fabrication and luminescent properties of core-shell InGaN/GaN multiple quantum wells on GaN nanopillars. Appl Phys Lett 100, 261103 (2012). doi: 10.1063/1.4731629

    CrossRef Google Scholar

    [30] Kusch G, Conroy M, Li HN, Edwards PR, Zhao C et al. Multi-wavelength emission from a single InGaN/GaN nanorod analyzed by cathodoluminescence hyperspectral imaging. Sci Rep 8, 1742 (2018). doi: 10.1038/s41598-018-20142-5

    CrossRef Google Scholar

    [31] Tchernycheva M, Lavenus P, Zhang H, Babichev AV, Jacopin G et al. InGaN/GaN core–shell single nanowire light emitting diodes with graphene-based P-contact. Nano Lett 14, 2456–2465 (2014). doi: 10.1021/nl5001295

    CrossRef Google Scholar

    [32] Kitauchi Y, Kobayashi Y, Tomioka K, Hara S, Hiruma K et al. Structural transition in indium phosphide nanowires. Nano Lett 10, 1699–1703 (2010). doi: 10.1021/nl1000407

    CrossRef Google Scholar

    [33] Noborisaka J, Motohisa J, Fukui T. Catalyst-free growth of GaAs nanowires by selective-area metalorganic vapor-phase epitaxy. Appl Phys Lett 86, 213102 (2005). doi: 10.1063/1.1935038

    CrossRef Google Scholar

    [34] Li ZY, Trendafilov S, Zhang FL, Allen MS, Allen JW et al. Broadband GaAsSb nanowire array photodetectors for filter-free multispectral imaging. Nano Lett 21, 7388–7395 (2021). doi: 10.1021/acs.nanolett.1c02777

    CrossRef Google Scholar

    [35] Deshpande S, Bhattacharya I, Malheiros-Silveira G, Ng KW, Schuster F et al. Ultracompact position-controlled inp nanopillar LEDs on silicon with bright electroluminescence at telecommunication wavelengths. ACS Photonics 4, 695–702 (2017). doi: 10.1021/acsphotonics.7b00065

    CrossRef Google Scholar

    [36] Gao Q, Saxena D, Wang F, Fu L, Mokkapati S et al. Selective-area epitaxy of pure wurtzite InP nanowires: high quantum efficiency and room-temperature lasing. Nano Lett 14, 5206–5211 (2014). doi: 10.1021/nl5021409

    CrossRef Google Scholar

    [37] Zhu Y, Wang BW, Li ZY, Zhang J, Tang Y et al. A high-efficiency wavelength-tunable monolayer LED with hybrid continuous-pulsed injection. Adv Mater 33, 2101375 (2021). doi: 10.1002/adma.202101375

    CrossRef Google Scholar

    [38] Ikeda K, Horiuchi S, Tanaka T, Susaki W. Design parameters of frequency response of GaAs—(Ga, Al)As double heterostructure LED's for optical communications. IEEE Trans Electron Devices 24, 1001–1005 (1977). doi: 10.1109/T-ED.1977.18869

    CrossRef Google Scholar

    [39] Gagrani N, Vora K, Fu L, Jagadish C, Tan HH. Flexible InP–ZnO nanowire heterojunction light emitting diodes. Nanoscale Horiz 7, 446–454 (2022). doi: 10.1039/D1NH00535A

    CrossRef Google Scholar

  • Supplementary information for High-speed multiwavelength InGaAs/InP quantum well nanowire array micro-LEDs for next generation optical communications
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Article Metrics

Article views(3315) PDF downloads(623) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint